
Docker Multi-Host Networking:
Overlays to the Rescue

2
singlestoneconsulting.com

The rise of Docker containers has driven the imagination of the IT world into a
frenzy, with claims that they would revolutionize the way applications were deployed
and services were consumed. And to some extent this was true – the appearance
of Docker cloud services (AWS Elastic Container Service) and Docker cluster
management and scheduling tools (Mesos, Kubernetes) have gone a long way to
bringing the promise of container technology to fruition.

But the biggest issue to wide scale Docker deployments thus far I feel has been the
somewhat cumbersome Docker networking implementation, particularly when it
came to intra-container communication across multiple hosts. It was possible, but
somewhat arcane to implement and orchestrate at a large scale (and there were a
slew of tools developed to work around it – see Flannel, Weave, or Pipeworks).

The implementation depended on the use of local Linux bridges on each host to
provide connectivity inside the host between the Dockers that resided on it...and
used network port translation to provide inbound communication to the containers
that the user needed to expose to the world. So if two containers on different hosts
needed to talk to each other, it was necessary to determine the host ip and port that
had been redirected to the internal Docker ip and port...and if that host died and the
containers were restarted on another host, well then, redo that entire process. It also
suffered from the issue of port contention in that only one Docker process could be
translated to any individual port on the outside host.

The Problem

However Docker purchased a startup known as SocketPlane earlier this year that had

proposed a solution that should be familiar to anyone who has investigated the VMware NSX

product...

http://www.singlestoneconsulting.com/

3
singlestoneconsulting.com

What the SocketPlane team proposed was using VXLAN encapsulation to build an overlay

network of “tunnels” between the Docker hosts that would allow the container traffic to pass

unmodified over the physical network. The original proposal involved using OpenVswitch

(as a popular reference Linux VXLAN implementation at the time) on a host to connect the

Docker internal network to other VXLAN tunnel endpoints (or VTEPs).

But after the acquisition Docker removed the OpenVswitch portion of the solution – the

ability to do VXLAN off a Linux bridge had existed since 2012. So without the usage of

additional software on the host, Docker could implement the solution natively within their

main source code.

But there still exists a problem with VXLAN as an overlay network, and that lies in the control

plane. In a standard physical network, endpoint discovery at layer 2 is handled through

various mechanisms (arp and flooding primarily) that do not exist in an overlay network. How

would a Docker host trying to pass traffic from a container it hosted to another container on

a different host know where to send the packets?

One answer is to use a centralized control plane that contains all the destination MAC

addresses of the containers mapped to the real hosts on which they sit. A second choice

is to use multicast, with all the complexity that brings. And lastly, you can use a specialized

protocol to advertise host/mac mappings such as BGP. Fortunately, for this purpose Docker

decided to do a combination of the first and last options . Through the usage of a centralized

key/value store (Etcd, Consul, or Zookeeper) the Docker hosts learn and advertise all the

information needed to facilitate the magic at a management plane level. And the Docker

hosts directly communicate host/mac mappings via the Serf gossip-based protocol to form a

distributed control plane.

And so with the release of Docker engine 1.9 in November, Docker combined these two

elements to provide a native solution to your multi-hosts woes via the usage of overlay

networking.

The Solution

Ok enough with the background, let’s play with the technology. For the purposes of

getting us all on the same page I have created a vagrant setup that creates all the necessary

components to get a lab up and running (an etcd server/Docker host, and one or more other

Docker hosts). You can find it here. I’m going to reiterate some of the information found in

the readme there at first, so bear with me.

Kicking the Tires

http://www.singlestoneconsulting.com/
https://tools.ietf.org/html/rfc7348
http://openvswitch.org/
http://www.definethecloud.net/vxlan-deep-dive/
https://github.com/DonMills/dockeroverlayvagrant

4
singlestoneconsulting.com

After you clone the repo, you can change into the directory and run vagrant up. This (if

you use the defaults) will create an etcd master server, and a single “minion” server that

is configured as an etcd proxy. Both will get the latest version of Docker installed, and

configured to be ready to go.

Now you can test the etcd service to see if it is up and running:

etcdctl cluster-health

You should see a similar response on any of the servers:

vagrant@etcdmaster:~$ etcdctl cluster-health

member 1dcf27d122fb08cb is healthy: got healthy result from

http://192.168.2.15:2379

cluster is healthy

These 3 default networks correspond to the the traditional (pre-1.9) docker networking

models (bridged, null, and host mode).

vagrant@minion0:~$ docker network ls

NETWORK ID NAME DRIVER

93038eea0cd9 bridge bridge

b83b588b89a3 none null

d33237d314e0 host host

These three default networks correspond to the traditional (pre-1.9) Docker networking

models (bridged, null, and host-only).

You can also see the traditional docker0 interface has been created (which is tied to the

“bridge” bridged network):

vagrant@minion0:~$ ip link

4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

state DOWN mode DEFAULT group default

 link/ether 02:42:ea:5b:3a:d8 brd ff:ff:ff:ff:ff:ff

http://www.singlestoneconsulting.com/

5
singlestoneconsulting.com

If you create a test container, you can see the docker0 interface come up (transition from

NO-CARRIER) and the virtual ethernet interface get created with docker0 as its master.

vagrant@minion0:~$ docker run -it busybox

vagrant@minion0:~$ ip link

4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

state UP mode DEFAULT group default

 link/ether 02:42:ea:5b:3a:d8 brd ff:ff:ff:ff:ff:ff

7: veth3ac08be: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue master docker0 state UP mode DEFAULT group default

 link/ether 36:8e:5e:0d:7c:0f brd ff:ff:ff:ff:ff:ff

So it’s worth talking about the virtual interface here or “veth”. In the linux networking

subsystems, a veth is, in reality, two virtual interfaces that are bonded together in a pair.

Traffic that comes into one veth goes out the other, and vise-versa. So let’s see where the

other veth in the pair exists...

vagrant@minion0:~$ ethtool -S veth3ac08be

NIC statistics:

 peer_ifindex: 6

Note: ethtool is not installed by default on the virtual machines if you are following along. So

issue sudo apt-get install ethtool if you want see this for yourself.

So our veth is bonded with a peer with index number 6. It doesn’t show up on an ip link on

the host, so let’s check inside the Docker itself.

ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

6: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff

And there it is. So to summarize, a veth created inside the container (which it calls eth0) is

linked with the veth in the host and that’s how traffic moves in and out of the container. This

will become important later.

http://www.singlestoneconsulting.com/

6
singlestoneconsulting.com

So we can now describe the Docker network and get the information about it that shows the

containers on the network, and their ip addresses.

vagrant@minion0:~$ docker network inspect bridge

[

 {

 “Name”: “bridge”,

 “Id”:

“93038eea0cd919e48fe5b3d47620a700837c49b8b43fc8e19b6f25ad528d83ff”,

 “Scope”: “local”,

 “Driver”: “bridge”,

 “IPAM”: {

 “Driver”: “default”,

 “Config”: [

 {

 “Subnet”: “172.17.0.1/16”,

 “Gateway”: “172.17.0.1”

 }

]

 },

 “Containers”: {

“e86330592614624de7af18a0ce5d914ceb99232c3da6a229d94ff82db7416e34”: {

 “EndpointID”:

“04f569ba9d321f7e06ffa563c7446c6cb3ae75d1dab26c3de2e7b39c9d7f3aee”,

 “MacAddress”: “02:42:ac:11:00:02”,

 “IPv4Address”: “172.17.0.2/16”,

 “IPv6Address”: “”

 }

 },

 “Options”: {

 “com.docker.network.bridge.default_bridge”: “true”,

 “com.docker.network.bridge.enable_icc”: “true”,

 “com.docker.network.bridge.enable_ip_masquerade”: “true”,

 “com.docker.network.bridge.host_binding_ipv4”: “0.0.0.0”,

 “com.docker.network.bridge.name”: “Docker0”,

 “com.docker.network.driver.mtu”: “1500”

 }

 }

]

http://www.singlestoneconsulting.com/

7
singlestoneconsulting.com

See that part I highlighted? Notice the output of docker ps:

vagrant@minion0:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e86330592614 busybox “sh” 29 minutes

ago Up 29 minutes drunk_noyce

And you might also notice that the mac address listed in the output above matches with the

output of the ip list command from inside the container. Cool!

But how do the containers get out to the world? The 172.17.0.0/16 ip address range is non-

routable across the internet, and you may or may not have internal routing setup for that

range.

If you look at the output of docker network inspect you can see the following line:

 “com.docker.network.bridge.enable_ip_masquerade”: “true”

and if you’ve ever set up a linux firewall you know what that means:

vagrant@minion0:~$ sudo iptables -L -t nat

...

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

MASQUERADE all -- 172.17.0.0/16 anywhere

...

Add it all together, and it means that the traffic from the containers is network address

translated (NAT) to the address of the Docker host.

One last bit on this section: with the new networking capability you can create additional

host-only bridged networks for the purposes of segmentation within a Docker host. Let’s try

that.

vagrant@minion0:~$ docker network create bridgered

a2e2f2aedf083ef809e71cd1a100c700fa27b1df1ed3fa320f52308cb5f148f9

vagrant@minion0:~$ docker network ls

NETWORK ID NAME DRIVER

93038eea0cd9 bridge bridge

b83b588b89a3 none null

d33237d314e0 host host

a2e2f2aedf08 bridgered bridge

http://www.singlestoneconsulting.com/

8
singlestoneconsulting.com

If I create another container and attach it to the new network, it will not be able to ping the ip

address of the first container:

vagrant@minion0:~$ docker run -it --net bridgered busybox

/ # ip addr

8: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.2/16 scope global eth0

 valid_lft forever preferred_lft forever

/ # ping 172.17.0.2

PING 172.17.0.2 (172.17.0.2): 56 data bytes

^C

--- 172.17.0.2 ping statistics ---

14 packets transmitted, 0 packets received, 100% packet loss

“Ok,” you say, ”that’s great and all, but where’s the multi-host stuff? Have I been lied to?”

Never fear dear reader, because as the old comedian used to say: I told you that story to tell

you this one.

While the new easy multiple bridging additions are good stuff for single host environments,

I said this post was about multi-host networking. And if you’ve been following along you

have two vagrant virtual machines ready and waiting. So let’s extend our examples to both

machines.

First, let’s create one of the new overlay networks. Pick either of your two Vms and issue the

following:

vagrant@minion0:~$ docker network create --driver=overlay

--subnet=10.0.1.0/24 overlayred

f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d4ab78a9e42e8758

vagrant@minion0:~$ docker network ls

NETWORK ID NAME DRIVER

f5ce773b3ff8 overlayred overlay

93038eea0cd9 bridge bridge

b83b588b89a3 none null

d33237d314e0 host host

Multi-host Party

http://www.singlestoneconsulting.com/

9
singlestoneconsulting.com

And now you’re thinking that you should probably repeat that on the other host. No! If you

go to the other host and docker network ls:

vagrant@etcdmaster:~$ docker network ls

NETWORK ID NAME DRIVER

f5ce773b3ff8 overlayred overlay

4abd705bb316 bridge bridge

a71b8b1e0f9d none null

e1332ccb2f6a host host

It already exists. How is this accomplished? Well if you remember we talked about the

centralized key/value store (etcd in this case) that docker used as a management plane for

overlay networks. And sure enough, if you start to poke around in the etcd store you will see

the following:

vagrant@etcdmaster:~$ etcdctl ls docker/network/v1.0/network

docker/network/v1.0/network/

f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d4ab78a9e42e8758

Notice the first 12 characters of the “overlayred” network id match with the string in the

etcdctl results. And if you were to retrieve the key/value pairs at that location you would see

several familiar items.

vagrant@etcdmaster:~$ etcdctl get docker/network/v1.0/network/

f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d4ab78a9e42e8758

{“addrSpace”:”GlobalDefault”, “enableIPv6”:false, “generic”:{com.

docker.network.generic”:{}},”id”:”f5ce773b3ff89e6e3998315fa0997b-

39c41dc0a05f8b6ae5d4ab78a9e42e8758“,”ipamType”:”default”,”ipamV-

4Config”:”[{\”PreferredPool\”:\”10.0.1.0/24\”,\”SubPool\”:\”\”,\”Op-

tions\”:null,\”Gateway\”:\”\”,\”AuxAddresses\”:null}]”,”ipamV4In-

fo”:”[{\”IPAMData\”:\”{\\\”AddressSpace\\\”:\\\”\\\”,\\\”Gate-

way\\\”:\\\”10.0.1.1/24\\\”,\\\”Pool\\\”:\\\”10.0.1.0/24\\\”}\”,\”P

oolID\”:\”GlobalDefault/10.0.1.0/24\”}]”,”name”:”overlayred”,”net-

workType”:”overlay”,”persist”:true,”postIPv6”:false}

http://www.singlestoneconsulting.com/

10
singlestoneconsulting.com

And there are the configuration items we gave when we created the network (name, subnet,

and network type). You can see most of this from the Docker command line, which I did on

the other host because I could:

vagrant@minion0:~$ docker network inspect overlayred

[

 {

 “Name”: “overlayred”,

 “Id”:

“f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d4ab78a9e42e8758”,

 “Scope”: “global”,

 “Driver”: “overlay”,

 “IPAM”: {

 “Driver”: “default”,

 “Config”: [

 {

 “Subnet”: “10.0.1.0/24”

 }

]

 },

 “Containers”: {},

 “Options”: {}

 }

]

Pretty slick. So let’s get some containers up.

vagrant@minion0:~$ docker run --net overlayred --name miniontest -it

busybox

vagrant@etcdmaster:~$ docker run --net overlayred --name mastertest -it

busybox

http://www.singlestoneconsulting.com/

11
singlestoneconsulting.com

Note with the “--net overlayred” option I have assigned these containers to the

overlayred network, and I have named each one of them. Let’s look back at our etcd store

and see what has happened.

vagrant@etcdmaster:~$ etcdctl ls /docker/network/v1.0/endpoint/

f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d4ab78a9e42e8758

docker/network/v1.0/endpoint/f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f-

8b6ae5d4ab78a9e42e8758/a431e932facdce90c80cbbd3e04cb60fd6a3e32f17b6ca-

5f1e6e9990440c13be

docker/network/v1.0/endpoint/f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f-

8b6ae5d4ab78a9e42e8758/821857d220175f1af18569e5c7109df7bae38f1405396eb-

fb7f98357a46a5a64

Hmm...two endpoints have been added to the network id we saw before. Let’s get the key/

values from one.

vagrant@etcdmaster:~$ etcdctl get /docker/network/v1.0/end-

point/f5ce773b3ff89e6e3998315fa0997b39c41dc0a05f8b6ae5d-

4ab78a9e42e8758/821857d220175f1af18569e5c7109df7bae38f1405396ebfb-

7f98357a46a5a64

{“anonymous”:false,”ep_iface”:{“addr”:”10.0.1.2/24”,”dst-

Prefix”:”eth”,”mac”:”02:42:0a:00:01:02”,”routes”:null,”s-

rcName”:”veth2667354”,”v4PoolID”:”GlobalDefault/10.0.1.0-

/24”,”v6PoolID”:””},”exposed_ports”:[],”generic”:{“com.

docker.network.endpoint.exposedports”:[],”com.docker.network.port-

map”:[]},”id”:”821857d220175f1af18569e5c7109df7bae38f1405396ebfb7f98357

a46a5a64”,”name”:”miniontest”,”sandbox”:”0a922e7b60a3aa360a6d58e625400-

2bf2b161e857914462964909105b13b9f82”}

And you can see the information about the container stored here, including its name, MAC

address, and ip address. So the Docker hosts are using the centralized key/value server to

store all the information about the network - and the hosts on that network - that is critical

for communication.

http://www.singlestoneconsulting.com/

12
singlestoneconsulting.com

If we look at the ip interfaces on one of the hosts, we can see some new additions.

vagrant@etcdmaster:~$ ip link

8: docker_gwbridge: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default

 link/ether 02:42:8e:3a:a6:99 brd ff:ff:ff:ff:ff:ff

10: vethdbf7407: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc no-

queue master docker_gwbridge state UP mode DEFAULT group default

 link/ether ba:ad:4c:53:7b:a5 brd ff:ff:ff:ff:ff:ff

It looks like a new bridge has been added (docker_gwbridge) and a veth has been added to it.

Where is the other end of that veth? Let’s run our ethtool command:

vagrant@etcdmaster:~$ ethtool -S vethdbf7407

NIC statistics:

 peer_ifindex: 9

On the container:

ip addr

6: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue

 link/ether 02:42:0a:00:01:03 brd ff:ff:ff:ff:ff:ff

 inet 10.0.1.3/24 scope global eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::42:aff:fe00:103/64 scope link

 valid_lft forever preferred_lft forever

9: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.2/16 scope global eth1

 valid_lft forever preferred_lft forever

 inet6 fe80::42:acff:fe12:2/64 scope link

 valid_lft forever preferred_lft forever

http://www.singlestoneconsulting.com/

13
singlestoneconsulting.com

It looks like that links with eth1 inside the container. But why does the container have two

interfaces?

The answer is simple. When you use an overlay network for a container, it creates one inter-

face (eth0 above) on the overlay network for intra-host communication over the overlay. But

the container may still need access to the outside world, and routing that traffic through the

overlay would require a logical device that could terminate the overlay traffic (act as a VTEP)

and route that traffic out to the world. So Docker made the decision to create a “dock-

er_gwbridge” on each host independently, and send all traffic headed outside of the over-

lay through the local host. If you rerun the iptables command from earlier you will also see

another NAT/Masquerade entry has been added for the new docker_gwbridge network. The

result is that the only traffic that crosses the overlay will be between containers on the same

overlay network.

If we look at that eth0, however, we can see a few interesting points. First, it has an ip ad-

dress within the 10.0.1.0/24 network, which we provided for our “overlayred” network. Sec-

ondly, it has an MTU size set to 1450 bytes, which is 50 bytes less than standard – and 50

bytes is exactly the size of a VXLAN header. So our eth0 interface within the container is

configured to transit the overlay network. But where is its veth partner? Well, we know that

eth0 has an ifindex of 6, so let’s dig around.

To find it, we have to delve into network namespaces, as this is where the real magic occurs.

Network namespaces are discrete and self-contained sets of interfaces and routing/forward-

ing tables that exist within a Linux system. The easiest analogy is VRF (virtual routing and for-

warding) technology within most router platforms. It’s a way to partition the network stack

and make dedicated interfaces and forwarding tables that don’t have the ability to interact

with each other. If you read my previous blog post on Docker containers you may remember

that containers have always used namespaces of different types to provide their compart-

mentalization – including networking. Well, with Docker 1.9, the use of network namespaces

was extended to provide dedicated bridge namespaces for overlay networks.

You can see this by running this command:

vagrant@etcdmaster:~$ sudo ip netns list

de4b19bbc624

1-f5ce773b3f

Network Namespaces

http://www.singlestoneconsulting.com/
http://www.singlestoneconsulting.com/blog/2015/june/with-docker-whats-old-is-new-again

14
singlestoneconsulting.com

(I have added a link from /var/run/docker/netns to /var/run/netns in the vagrant images for

you. If you are doing this on a separate system, you will have to link these for the ip netns

commands to read the Docker namespaces.)

You can see two namespaces exist. One of these is the namespace for the Docker container

itself, and one is the namespace for the overlay network bridge.

vagrant@etcdmaster:~$ docker inspect 567a5 | grep “SandboxKey”

 “SandboxKey”: “/var/run/docker/netns/de4b19bbc624”,

So the top one (de4b19bbc624) is the namespace for the container. Let’s look at the other

one.

vagrant@etcdmaster:~$ sudo ip netns exec 1-f5ce773b3f ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state

UP group default

 link/ether 76:d8:5b:0f:c1:05 brd ff:ff:ff:ff:ff:ff

 inet 10.0.1.1/24 scope global br0

 valid_lft forever preferred_lft forever

 inet6 fe80::40d2:8bff:fe47:7617/64 scope link

 valid_lft forever preferred_lft forever

5: vxlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

master br0 state UNKNOWN group default

 link/ether c6:57:04:df:bf:35 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::c457:4ff:fedf:bf35/64 scope link

 valid_lft forever preferred_lft forever

7: veth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue mas-

ter br0 state UP group default

 link/ether 76:d8:5b:0f:c1:05 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::74d8:5bff:fe0f:c105/64 scope link

 valid_lft forever preferred_lft forever

http://www.singlestoneconsulting.com/

15
singlestoneconsulting.com

And there is the overlay network bridge. Notice the vxlan1 interface with a MTU of 1500, and

the br0 and veth2 interfaces with MTUs of 1450. Let’s check the link for veth2:

vagrant@etcdmaster:~$ sudo ip netns exec 1-f5ce773b3f ethtool -S veth2

NIC statistics:

 peer_ifindex: 6

And it’s peer ifindex 6, which matches our eth0 in the output of the ip link command run

inside the Docker above.

So the traffic for the overlay goes from eth0 in the Docker, out veth2 in the dedicated net-

work namespace into the bridge, and then does what? Well, if we look at the forwarding

database (FDB) for the bridge we see this entry:

vagrant@etcdmaster:~$ sudo ip netns exec 1-f5ce773b3f bridge fdb show

dev vxlan1

...

02:42:0a:00:01:02 dst 192.168.2.200 self permanent

192.168.2.200 is the ip address of our other server (minion0). What’s that MAC address? If

we go into the Docker on the minion0 server:

vagrant@minion0:~$ docker attach miniontest

/ # ip link

...

11: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue

 link/ether 02:42:0a:00:01:02 brd ff:ff:ff:ff:ff:ff

It’s the MAC address of the docker’s eth0. So the overlay bridge on etcdmaster knows the

MAC address of the docker on the other server, and knows that to reach that MAC address

you take the VXLAN tunnel to 192.168.2.200 - because it learned it via the Serf protocol.

http://www.singlestoneconsulting.com/

16
singlestoneconsulting.com

Wow! That was a lot of in depth discussion, so let’s do what we’ve all been waiting for and

send some traffic over. One thing to note is that if you have given names to all the contain-

ers on the overlay network, you can reach them by name inside dockers on that overlay...

much like the pre-existing Docker “link” feature, the container has the hostname/ip address

mappings for each other container on the overlay injected into its host file. On the minion-

test Docker (residing on the minion0 host):

/ # more /etc/hosts

10.0.1.2 62ba9269b985

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

10.0.1.3 mastertest

10.0.1.3 mastertest.overlayred

/ # ping mastertest

PING mastertest (10.0.1.3): 56 data bytes

64 bytes from 10.0.1.3: seq=0 ttl=64 time=0.576 ms

64 bytes from 10.0.1.3: seq=1 ttl=64 time=0.451 ms

64 bytes from 10.0.1.3: seq=2 ttl=64 time=0.436 ms

64 bytes from 10.0.1.3: seq=3 ttl=64 time=0.452 ms

64 bytes from 10.0.1.3: seq=4 ttl=64 time=0.445 ms

64 bytes from 10.0.1.3: seq=5 ttl=64 time=0.460 ms

^C

--- mastertest ping statistics ---

6 packets transmitted, 6 packets received, 0% packet loss

round-trip min/avg/max = 0.436/0.470/0.576 ms

http://www.singlestoneconsulting.com/

17
singlestoneconsulting.com

And there we are - traffic between two Dockers on two separate hosts crossing the overlay

network. You can see the VXLAN in action by going to the other server and doing some net-

work captures.

vagrant@etcdmaster:~$ sudo tcpdump -i eth1 udp port 4789 -vvvn

tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size

65535 bytes

20:16:05.083210 IP (tos 0x0, ttl 64, id 17400, offset 0, flags [none],

proto UDP (17), length 134)

 192.168.2.200.46994 > 192.168.2.15.4789: [no cksum] VXLAN, flags

[I] (0x08), vni 256

IP (tos 0x0, ttl 64, id 12673, offset 0, flags [DF], proto ICMP (1),

length 84)

 10.0.1.2 > 10.0.1.3: ICMP echo request, id 2048, seq 150, length

64

This shows the outer VXLAN packet (from 192.168.2.200 to 192.168.2.15) on UDP port 4789,

and inside that packet is an IP ICMP packet from 10.0.1.2 to 10.0.1.3.

Let’s see what happens if we try and make another overlay with the same ip address range –

similar to what might happen in a multi-tenancy environment.

vagrant@etcdmaster:~$ docker network create --driver=overlay --sub-

net=10.0.1.0/24 overlayblue

d43e9dbb333d2829b427271f62634830c97519c6e7f4f64ce416dcf5944c0296

vagrant@etcdmaster:~$ docker network ls

NETWORK ID NAME DRIVER

d43e9dbb333d overlayblue overlay

f5ce773b3ff8 overlayred overlay

Multi-Tenancy and Wrapping Up

http://www.singlestoneconsulting.com/

18
singlestoneconsulting.com

And it created fine...both are listed. Let’s make new containers on the network:

vagrant@etcdmaster:~$ docker run -it --net overlayblue --name master-

blue busybox

vagrant@minion0:~$ docker run --net overlayblue --name minionblue -it

busybox

/ # ping masterblue

PING masterblue (10.0.1.6): 56 data bytes

64 bytes from 10.0.1.6: seq=0 ttl=64 time=0.463 ms

64 bytes from 10.0.1.6: seq=1 ttl=64 time=0.464 ms

64 bytes from 10.0.1.6: seq=2 ttl=64 time=0.440 ms

^C

--- masterblue ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.440/0.455/0.464 ms

/ # ping 10.0.1.3

PING 10.0.1.3 (10.0.1.3): 56 data bytes

^C

--- 10.0.1.3 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

We can see there is network segregation (can’t talk between the two overlay networks), but

they are sharing the same subnet and not allowing duplicate ip addresses. The two overlays

will use a separate VNI (VXLAN network identifier) to show each discrete network segment.

What about routed overlays? After all, our two hosts are sitting in the same 192.168.2.0/24

subnet. In testing, it seems to work fine across a router as long as the VXLAN ports are al-

lowed, and all hosts can reach the centralized key/value store. If you are interested in playing

around with layer 3, I’ve created another vagrant setup that mirrors the one we’ve been using,

but has a Vyos (Vyatta) router in the middle. You can find it here.

That about does it for this discussion of the new Docker networking features. While I went

quite in depth in some parts of this, I hope that you have found it useful and informative. It

is my belief that these new networking features will help to grow the adoption of container

technology far beyond its current state.

http://www.singlestoneconsulting.com/
https://github.com/DonMills/dockeroverlayvyos

Founded in 1997, SingleStone is a consulting firm specializing in customer experience
solutions, spanning technology, strategy, business processes and culture. We help
our clients improve their interactions and communications with customers by
combining these disciplines to create, implement and support end-to-end customer
experiences that benefit both business and humanity.

About SingleStone

Connect With Us

Don Mills
Managing Consultant

4101 Cox Road, Suite 350
Glen Allen, VA 23060

804.648.0600
SingleStoneConsulting.com

http://www.singlestoneconsulting.com/
https://twitter.com/SingleStoneCX
http://facebook.com/SingleStoneConsulting
http://linkedin.com/company/19100

