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Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.

• It should be created and started as easily as a container.
• It should be able to scale with your container pool.
• It should work the same way for development, tests, production, …
• It should adapt to all situations.



Infinit storage platform

Infinit is a storage platform designed with containers in mind. It aggregates nodes local storage into a single
virtual pool and provides several APIs on top of it.
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Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.

Infinit follows the container philosophy:

• Can be created and run as seamlessly as a container.
• Can scale with you container pool.
• Is the same in all situations: development, unit tests, production …
• Can be configured for each situation: encryption, redundancy, compression, …
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Infinit fundamental principles:

• Federate all nodes in an overlay network for lookup and routing.
• Store data as blocks in a distributed hashtable (key-value store) with a per-block consensus.
• Use cryptographic access control to dispense from any leader.
• Use symmetrical operations to ensure resilience and flexibility.
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Dive-in: DHT blocks

Immutable block are cheap to write and read, fetchable from any source and cachable permanently on-disk.



A file is mostly a mutable block with
metadata and a FAT of immutable
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A file is mostly a mutable block with
metadata and a FAT of immutable
block.

Dive-in: filesystem layer

File contents is cachable at will, cheap and
atomic writes.



Dive-in: filesystem layer

The POSIX API is inherently sequential. We are highly parallel.



Dive-in: filesystem layer

Directories prefetching and files look-ahead enables batching and pipelining.
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Dive-in: consensus

Each block is managed by a specific quorum of node with a variable composition, running multipaxos.

No failure point or bottleneck, strong read after write consistency.
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Dive-in: overlay

The overlay algorithm is one major customization point of the platform.

Data placement: rack-aware, zone-aware, reliability-aware, ensure local copies, ...



Demo!

Let's persist that storage!



Questions ?
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