
Persistent storage tailored for containers

Quentin “mefyl” Hocquet
mefyl@infinit.sh

CTO @ Infinit

Version 1.2-26-gbcb3c69

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

mefyl@infinit.sh


Plan

Containers and persistent storage

Infinit storage platform

Dive-in

Demo

Q&A



Containers and persistent storage

Containers are fast, scalable and flexible.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.

• It should be created and started as easily as a container.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.

• It should be created and started as easily as a container.
• It should be able to scale with your container pool.



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.

• It should be created and started as easily as a container.
• It should be able to scale with your container pool.
• It should work the same way for development, tests, production, …



Containers and persistent storage

Containers are fast, scalable and flexible.

• Fast and easy to start and stop.
• Fast and easy to scale.
• Unified from development to production.
• Yet customizable for every situation.

However containers tend to be stateless, which can be quite limiting. We need persistent storage for containers.

• It should be created and started as easily as a container.
• It should be able to scale with your container pool.
• It should work the same way for development, tests, production, …
• It should adapt to all situations.



Infinit storage platform

Infinit is a storage platform designed with containers in mind. It aggregates nodes local storage into a single
virtual pool and provides several APIs on top of it.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.

Infinit follows the container philosophy:

• Can be created and run as seamlessly as a container.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.

Infinit follows the container philosophy:

• Can be created and run as seamlessly as a container.
• Can scale with you container pool.



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.

Infinit follows the container philosophy:

• Can be created and run as seamlessly as a container.
• Can scale with you container pool.
• Is the same in all situations: development, unit tests, production …



Infinit storage platform

The Infinit platform is truly distributed: all nodes are equal.

• Works the same with 1 or 10k nodes.
• Nodes can come and go at will.

Infinit follows the container philosophy:

• Can be created and run as seamlessly as a container.
• Can scale with you container pool.
• Is the same in all situations: development, unit tests, production …
• Can be configured for each situation: encryption, redundancy, compression, …



Infinit design

Infinit fundamental principles:



Infinit design

Infinit fundamental principles:

• Federate all nodes in an overlay network for lookup and routing.



Infinit design

Infinit fundamental principles:

• Federate all nodes in an overlay network for lookup and routing.
• Store data as blocks in a distributed hashtable (key-value store) with a per-block consensus.



Infinit design

Infinit fundamental principles:

• Federate all nodes in an overlay network for lookup and routing.
• Store data as blocks in a distributed hashtable (key-value store) with a per-block consensus.
• Use cryptographic access control to dispense from any leader.



Infinit design

Infinit fundamental principles:

• Federate all nodes in an overlay network for lookup and routing.
• Store data as blocks in a distributed hashtable (key-value store) with a per-block consensus.
• Use cryptographic access control to dispense from any leader.
• Use symmetrical operations to ensure resilience and flexibility.





Dive-in: DHT blocks



Mutable blocks
• Subject to conflicts.
• Subject to invalidation.
• Hard to certify and cipher.

Dive-in: DHT blocks



Mutable blocks
• Subject to conflicts.
• Subject to invalidation.
• Hard to certify and cipher.

Immutable blocks
• No conflicts.
• No invalidation: cachable forever.
• Easy to certify since content addressable:
address = hash(contents) .

Dive-in: DHT blocks



Mutable blocks
• Subject to conflicts.
• Subject to invalidation.
• Hard to certify and cipher.

Immutable blocks
• No conflicts.
• No invalidation: cachable forever.
• Easy to certify since content addressable:
address = hash(contents) .

Dive-in: DHT blocks

Immutable block are cheap to write and read, fetchable from any source and cachable permanently on-disk.



A file is mostly a mutable block with
metadata and a FAT of immutable
block.

Dive-in: filesystem layer



A file is mostly a mutable block with
metadata and a FAT of immutable
block.

Dive-in: filesystem layer

File contents is cachable at will, cheap and
atomic writes.



Dive-in: filesystem layer

The POSIX API is inherently sequential. We are highly parallel.



Dive-in: filesystem layer

Directories prefetching and files look-ahead enables batching and pipelining.



Dive-in: consensus

Each block is managed by a specific quorum of node with a variable composition, running multipaxos.



Dive-in: consensus

Each block is managed by a specific quorum of node with a variable composition, running multipaxos.

No failure point or bottleneck, strong read after write consistency.



Kelips Kouncil

Dive-in: overlay

The overlay algorithm is one major customization point of the platform.



Kelips Kouncil

Dive-in: overlay

The overlay algorithm is one major customization point of the platform.

Data placement: rack-aware, zone-aware, reliability-aware, ensure local copies, ...



Demo!

Let's persist that storage!



Questions ?


	Persistent storage tailored for containers
	Plan
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Containers and persistent storage
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit storage platform
	Infinit design
	Infinit design
	Infinit design
	Infinit design
	Infinit design
	Dive-in: DHT blocks
	Dive-in: DHT blocks
	Mutable blocks

	Dive-in: DHT blocks
	Mutable blocks
	Immutable blocks

	Dive-in: DHT blocks
	Mutable blocks
	Immutable blocks

	Dive-in: filesystem layer
	Dive-in: filesystem layer
	Dive-in: filesystem layer
	Dive-in: filesystem layer
	Dive-in: consensus
	Dive-in: consensus
	Dive-in: overlay
	Dive-in: overlay
	Demo!
	Questions ?


